An Aggregated-Based Deep Learning Method for Leukemic B-lymphoblast Classification

Author:

Kasani Payam HosseinzadehORCID,Park Sang-WonORCID,Jang Jae-WonORCID

Abstract

Leukemia is a cancer of blood cells in the bone marrow that affects both children and adolescents. The rapid growth of unusual lymphocyte cells leads to bone marrow failure, which may slow down the production of new blood cells, and hence increases patient morbidity and mortality. Age is a crucial clinical factor in leukemia diagnosis, since if leukemia is diagnosed in the early stages, it is highly curable. Incidence is increasing globally, as around 412,000 people worldwide are likely to be diagnosed with some type of leukemia, of which acute lymphoblastic leukemia accounts for approximately 12% of all leukemia cases worldwide. Thus, the reliable and accurate detection of normal and malignant cells is of major interest. Automatic detection with computer-aided diagnosis (CAD) models can assist medics, and can be beneficial for the early detection of leukemia. In this paper, a single center study, we aimed to build an aggregated deep learning model for Leukemic B-lymphoblast classification. To make a reliable and accurate deep learner, data augmentation techniques were applied to tackle the limited dataset size, and a transfer learning strategy was employed to accelerate the learning process, and further improve the performance of the proposed network. The results show that our proposed approach was able to fuse features extracted from the best deep learning models, and outperformed individual networks with a test accuracy of 96.58% in Leukemic B-lymphoblast diagnosis.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Machine Learning Approach to Predict Blood Cancer from Patients' Symptoms and Blood Images;2024-09-11

2. A review on leukemia detection and classification using Artificial Intelligence-based techniques;Computers and Electrical Engineering;2024-09

3. Advanced Knee Osteoarthritis Detection using Deep Learning;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

4. A Comprehensive Study on Technological Advancements in Treatment and Prognosis of Acute Myeloid Leukemia;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

5. Statistical performance review on diagnosis of leukemia, glaucoma and diabetes mellitus using AI;Statistics in Medicine;2024-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3