A Deep Convolutional Neural Network for Pneumonia Detection in X-ray Images with Attention Ensemble

Author:

An Qiuyu1ORCID,Chen Wei1,Shao Wei2

Affiliation:

1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute, Shenzhen 518067, China

Abstract

In the domain of AI-driven healthcare, deep learning models have markedly advanced pneumonia diagnosis through X-ray image analysis, thus indicating a significant stride in the efficacy of medical decision systems. This paper presents a novel approach utilizing a deep convolutional neural network that effectively amalgamates the strengths of EfficientNetB0 and DenseNet121, and it is enhanced by a suite of attention mechanisms for refined pneumonia image classification. Leveraging pre-trained models, our network employs multi-head, self-attention modules for meticulous feature extraction from X-ray images. The model’s integration and processing efficiency are further augmented by a channel-attention-based feature fusion strategy, one that is complemented by a residual block and an attention-augmented feature enhancement and dynamic pooling strategy. Our used dataset, which comprises a comprehensive collection of chest X-ray images, represents both healthy individuals and those affected by pneumonia, and it serves as the foundation for this research. This study delves deep into the algorithms, architectural details, and operational intricacies of the proposed model. The empirical outcomes of our model are noteworthy, with an exceptional performance marked by an accuracy of 95.19%, a precision of 98.38%, a recall of 93.84%, an F1 score of 96.06%, a specificity of 97.43%, and an AUC of 0.9564 on the test dataset. These results not only affirm the model’s high diagnostic accuracy, but also highlight its promising potential for real-world clinical deployment.

Funder

Shenzhen Science and Technology Program

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3