Comparison of Bone Evaluation and Metal Artifact between Photon-Counting CT and Five Energy-Integrating-Detector CT under Standardized Conditions Using Cadaveric Forearms

Author:

Fukuda Takeshi1ORCID,Yonenaga Takenori1,Akao Ryo1,Hashimoto Tohru2,Maeda Kazuhiro3,Shoji Tomokazu4,Shioda Shoichi1,Ishizaka Yu5,Ojiri Hiroya1ORCID

Affiliation:

1. Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan

2. Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan

3. Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan

4. Department of Radiology, Tha Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan

5. Medicalscanning Tokyo, 3-1-17 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Abstract

Background: To compare the potential of various bone evaluations by considering photon-counting CT (PCCT) and multiple energy-integrating-detector CT (EIDCT), including three dual-energy CT (DECT) scanners with standardized various parameters in both standard resolution (STD) and ultra-high-resolution (UHR) modes. Methods: Four cadaveric forearms were scanned using PCCT and five EIDCTs, by applying STD and UHR modes. Visibility of bone architecture, image quality, and a non-displaced fracture were subjectively scored against a reference EIDCT image by using a five-point scale. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared. To assess metal artifacts, a forearm with radial plate fixation was scanned by with and without Tin filter (Sn+ and Sn−), and virtual monoenergetic image (VMI) at 120 keV was created. Regarding Sn+ and VMI, images were only obtained from the technically available scanners. Subjective scores and the areas of streak artifacts were compared. Results: PCCT demonstrated significantly lower noise (p < 0.001) and higher bone SNR and CNR (p < 0.001) than all EIDCTs in both resolution modes. However, there was no significant difference between PCCT and EIDCTs in almost all subjective scores, regardless of scan modes, except for image quality where a significant difference was observed, compared to several EIDCTs. Metal artifact analysis revealed PCCT had larger artifact in Sn− and Sn+ (p < 0.001), but fewer in VMIs than three DECTs (p < 0.001 or 0.001). Conclusions: Under standardized conditions, while PCCT had almost no subjective superiority in visualizing bone structures and fracture line when compared to EIDCTs, it outperformed in quantitative analysis related to image quality, especially in lower noise and higher tissue contrast. When using PCCT to assess cases with metal implants, it may be recommended to use VMIs to minimize the possible tendency for artifact to be pronounced.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3