Revolutionizing Breast Cancer Diagnosis: A Concatenated Precision through Transfer Learning in Histopathological Data Analysis

Author:

Jaganathan Dhayanithi1,Balasubramaniam Sathiyabhama1,Sureshkumar Vidhushavarshini2ORCID,Dhanasekaran Seshathiri3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Sona College of Technology, Salem 636005, India

2. Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai 600026, India

3. Department of Computer Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway

Abstract

Breast cancer remains a significant global public health concern, emphasizing the critical role of accurate histopathological analysis in diagnosis and treatment planning. In recent years, the advent of deep learning techniques has showcased notable potential in elevating the precision and efficiency of histopathological data analysis. The proposed work introduces a novel approach that harnesses the power of Transfer Learning to capitalize on knowledge gleaned from pre-trained models, adapting it to the nuanced landscape of breast cancer histopathology. Our proposed model, a Transfer Learning-based concatenated model, exhibits substantial performance enhancements compared to traditional methodologies. Leveraging well-established pretrained models such as VGG-16, MobileNetV2, ResNet50, and DenseNet121—each Convolutional Neural Network architecture designed for classification tasks—this study meticulously tunes hyperparameters to optimize model performance. The implementation of a concatenated classification model is systematically benchmarked against individual classifiers on histopathological data. Remarkably, our concatenated model achieves an impressive training accuracy of 98%. The outcomes of our experiments underscore the efficacy of this four-level concatenated model in advancing the accuracy of breast cancer histopathological data analysis. By synergizing the strengths of deep learning and transfer learning, our approach holds the potential to augment the diagnostic capabilities of pathologists, thereby contributing to more informed and personalized treatment planning for individuals diagnosed with breast cancer. This research heralds a promising stride toward leveraging cutting-edge technology to refine the understanding and management of breast cancer, marking a significant advancement in the intersection of artificial intelligence and healthcare.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3