Computer-Aided Discrimination of Glaucoma Patients from Healthy Subjects Using the RETeval Portable Device

Author:

Bekollari Marsida1,Dettoraki Maria2,Stavrou Valentina2,Glotsos Dimitris1ORCID,Liaparinos Panagiotis1ORCID

Affiliation:

1. Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece

2. Department of Ophthalmology, “Elpis” General Hospital, 11522 Athens, Greece

Abstract

Glaucoma is a chronic, progressive eye disease affecting the optic nerve, which may cause visual damage and blindness. In this study, we present a machine-learning investigation to classify patients with glaucoma (case group) with respect to normal participants (control group). We examined 172 eyes at the Ophthalmology Clinic of the “Elpis” General Hospital of Athens between October 2022 and September 2023. In addition, we investigated the glaucoma classification in terms of the following: (a) eye selection and (b) gender. Our methodology was based on the features extracted via two diagnostic optical systems: (i) conventional optical coherence tomography (OCT) and (ii) a modern RETeval portable device. The machine-learning approach comprised three different classifiers: the Bayesian, the Probabilistic Neural Network (PNN), and Support Vectors Machines (SVMs). For all cases examined, classification accuracy was found to be significantly higher when using the RETeval device with respect to the OCT system, as follows: 14.7% for all participants, 13.4% and 29.3% for eye selection (right and left, respectively), and 25.6% and 22.6% for gender (male and female, respectively). The most efficient classifier was found to be the SVM compared to the PNN and Bayesian classifiers. In summary, all aforementioned comparisons demonstrate that the RETeval device has the advantage over the OCT system for the classification of glaucoma patients by using the machine-learning approach.

Publisher

MDPI AG

Reference71 articles.

1. Deep learning;LeCun;Nature,2015

2. Probabilistic Neural Networks;Specht;Neural Netw.,1990

3. A tutorial on support vector machines for pattern recognition;Burges;Data Min. Knowl. Discov.,1998

4. Theodoridis, S., and Koutroumbas, K. (2008). Pattern Recognition, Academic Press. [4th ed.].

5. Deep convolutional neural networks for computer aided detection: Cnn architectures, dataset characteristics and transfer learning;Shin;IEEE Trans. Med. Imaging,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3