CXray-EffDet: Chest Disease Detection and Classification from X-ray Images Using the EfficientDet Model

Author:

Nawaz Marriam,Nazir Tahira,Baili JamelORCID,Khan Muhammad AttiqueORCID,Kim Ye Jin,Cha Jae-Hyuk

Abstract

The competence of machine learning approaches to carry out clinical expertise tasks has recently gained a lot of attention, particularly in the field of medical-imaging examination. Among the most frequently used clinical-imaging modalities in the healthcare profession is chest radiography, which calls for prompt reporting of the existence of potential anomalies and illness diagnostics in images. Automated frameworks for the recognition of chest abnormalities employing X-rays are being introduced in health departments. However, the reliable detection and classification of particular illnesses in chest X-ray samples is still a complicated issue because of the complex structure of radiographs, e.g., the large exposure dynamic range. Moreover, the incidence of various image artifacts and extensive inter- and intra-category resemblances further increases the difficulty of chest disease recognition procedures. The aim of this study was to resolve these existing problems. We propose a deep learning (DL) approach to the detection of chest abnormalities with the X-ray modality using the EfficientDet (CXray-EffDet) model. More clearly, we employed the EfficientNet-B0-based EfficientDet-D0 model to compute a reliable set of sample features and accomplish the detection and classification task by categorizing eight categories of chest abnormalities using X-ray images. The effective feature computation power of the CXray-EffDet model enhances the power of chest abnormality recognition due to its high recall rate, and it presents a lightweight and computationally robust approach. A large test of the model employing a standard database from the National Institutes of Health (NIH) was conducted to demonstrate the chest disease localization and categorization performance of the CXray-EffDet model. We attained an AUC score of 0.9080, along with an IOU of 0.834, which clearly determines the competency of the introduced model.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry, and Energy, Republic of Korea

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3