Natural Language Processing Applications for Computer-Aided Diagnosis in Oncology

Author:

Li Chengtai,Zhang YimingORCID,Weng Ying,Wang Boding,Li Zhenzhu

Abstract

In the era of big data, text-based medical data, such as electronic health records (EHR) and electronic medical records (EMR), are growing rapidly. EHR and EMR are collected from patients to record their basic information, lab tests, vital signs, clinical notes, and reports. EHR and EMR contain the helpful information to assist oncologists in computer-aided diagnosis and decision making. However, it is time consuming for doctors to extract the valuable information they need and analyze the information from the EHR and EMR data. Recently, more and more research works have applied natural language processing (NLP) techniques, i.e., rule-based, machine learning-based, and deep learning-based techniques, on the EHR and EMR data for computer-aided diagnosis in oncology. The objective of this review is to narratively review the recent progress in the area of NLP applications for computer-aided diagnosis in oncology. Moreover, we intend to reduce the research gap between artificial intelligence (AI) experts and clinical specialists to design better NLP applications. We originally identified 295 articles from the three electronic databases: PubMed, Google Scholar, and ACL Anthology; then, we removed the duplicated papers and manually screened the irrelevant papers based on the content of the abstract; finally, we included a total of 23 articles after the screening process of the literature review. Furthermore, we provided an in-depth analysis and categorized these studies into seven cancer types: breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, colorectal cancer, and brain tumors. Additionally, we identified the current limitations of NLP applications on supporting the clinical practices and we suggest some promising future research directions in this paper.

Funder

Ningbo Major Science & Technology Project

University of Nottingham Ningbo China Project

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3