Abstract
Autism spectrum disorder (ASD) is a lifelong neurological disease, which seriously reduces the patients’ life quality. Generally, an early diagnosis is beneficial to improve ASD children’s life quality. Current methods based on samples from multiple sites for ASD diagnosis perform poorly in generalization due to the heterogeneity of the data from multiple sites. To address this problem, this paper presents a similarity measure-based approach for ASD diagnosis. Specifically, the few-shot learning strategy is used to measure potential similarities in the RS-fMRI data distributions, and, furthermore, a similarity function for samples from multiple sites is trained to enhance the generalization. On the ABIDE database, the presented approach is compared to some representative methods, such as SVM and random forest, in terms of accuracy, precision, and F1 score. The experimental results show that the experimental indicators of the proposed method are better than those of the comparison methods to varying degrees. For example, the accuracy on the TRINITY site is more than 5% higher than that of the comparison method, which clearly proves that the presented approach achieves a better generalization performance than the compared methods.
Funder
Key Research and Development Project of Hainan Province
National Natural Science Foundation of China
Key Science and Technology Plan Project of Haikou
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献