Abstract
The study aims to evaluate the diagnostic performance of an artificial intelligence system based on deep learning for the segmentation of occlusal, proximal and cervical caries lesions on panoramic radiographs. The study included 504 anonymous panoramic radiographs obtained from the radiology archive of Inonu University Faculty of Dentistry’s Department of Oral and Maxillofacial Radiology from January 2018 to January 2020. This study proposes Dental Caries Detection Network (DCDNet) architecture for dental caries segmentation. The main difference between DCDNet and other segmentation architecture is that the last part of DCDNet contains a Multi-Predicted Output (MPO) structure. In MPO, the final feature map split into three different paths for detecting occlusal, proximal and cervical caries. Extensive experimental analyses were executed to analyze the DCDNet network architecture performance. In these comparison results, while the proposed model achieved an average F1-score of 62.79%, the highest average F1-score of 15.69% was achieved with the state-of-the-art segmentation models. These results show that the proposed artificial intelligence-based model can be one of the indispensable auxiliary tools of dentists in the diagnosis and treatment planning of carious lesions by enabling their detection in different locations with high success.
Reference43 articles.
1. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors;Kassebaum;J. Dent. Res.,2017
2. What is an appropriate caries diagnosis?;Baelum;Acta. Odontol. Scand.,2010
3. Comparative evaluation of condylar guidance obtained by three different interocclusal recording materials in a semi-adjustable articulator and digital panoramic radiographic images in dentate patients: An in vivo study;Keerthana;J. Indian Prosthodont. Soc.,2021
4. Recent advances in imaging technologies in dentistry;Shah;World J. Radiol.,2014
5. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm;Lee;J. Dent.,2018
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献