Microparticles as Viral RNA Carriers from Stool for Stable and Sensitive Surveillance

Author:

Kifaro Emmanuel GeorgeORCID,Kim Mi Jung,Jung SeungwonORCID,Jang Yoon-ha,Moon Sungyeon,Lee Dong-Hun,Song Chang-SeonORCID,Misinzo GeraldORCID,Kim Sang Kyung

Abstract

Since its discovery, polymerase chain reaction (PCR) has emerged as an important technology for the diagnosis and identification of infectious diseases. It is a highly sensitive and reliable nucleic acids (NA) detection tool for various sample types. However, stool, which carries the most abundant micro-organisms and physiological byproducts, remains to be the trickiest clinical specimen for molecular detection of pathogens. Herein, we demonstrate the novel application of hydrogel microparticles as carriers of viral RNA from stool samples without prior RNA purification for real-time polymerase chain reaction (qPCR). In each microparticle of primer-incorporated network (PIN) as a self-sufficient reaction compartment, immobilized reverse transcription (RT) primers capture the viral RNA by hybridization and directly initiate RT of RNA to generate a pool of complementary DNA (PIN-cDNA pool). Through a simple operation with a portable thermostat device, a PIN-cDNA pool for influenza A virus (IAV) was obtained in 20 min. The PIN-cDNA pools can be stored at room temperature, or directly used to deliver cDNA templates for qPCR. The viral cDNA templates were freely released in the subsequent qPCR to allow amplification efficiency of over 91%. The assay displayed good linearity, repeatability, and comparable limit of detection (LoD) with a commercialized viral RNA purification kit. As a proof of concept, this technology carries a huge potential for onsite application to improve human and animal infectious disease surveillance activities using stool samples without the need for a laboratory or centrifuge for sample preparation.

Funder

National Research Council of Science and Technology

Government of Tanzania through the World Bank

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3