Electrical Stimulation for Preventing Skin Injuries in Denervated Gluteal Muscles—Promising Perspectives from a Case Series and Narrative Review

Author:

Alberty Marie,Mayr WinfriedORCID,Bersch Ines

Abstract

Spinal cord injury (SCI) where the lower motor neuron is compromised leads to atrophy and degenerative changes in the respective muscle. This type of lesion becomes especially critical when the gluteal muscles and/or the hamstrings are affected as they usually offer a cushioning effect to protect from skin injuries. Previous research conducted over the past 30 years has made advancements in the development of parameters for the optimal application of long pulse stimulation with the aim to restore muscle structure and trophic aspects in people with chronic SCI (<20 years post-injury). This work provides an overview of previous achievements in the field through a narrative literature review before presenting preliminary results in the form of a case series from an ongoing study investigating the acute effects of six months of long pulse stimulation on the tissue composition of the gluteal muscles in five people with chronic SCI (>20 years post-injury). Participants underwent a 33-min home-based long pulse stimulation program five times a week, and their muscle and adipose tissue thicknesses were assessed at baseline, after three and six months, respectively, using magnetic resonance imaging. The results show that the largest increase in muscle thickness occurred at the level of the height of the acetabulum (+44.37%; χ2(2) = 0.5; p = 0.779), whereas the most important decrease in adipose tissue occurred at the level of the sacroiliac joint (SIJ) reference (−11.43%; χ2(2) = 1.6; p = 0.449) within only six months of regular stimulation despite the preceding long denervation period. The underlying mechanism and physiology of muscular resuscitation from myofibrillar debris as presented in chronic denervation to functional contractile entities remain to be investigated further.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3