Accuracy of Dose-Saving Artificial-Intelligence-Based 3D Angiography (3DA) for Grading of Intracranial Artery Stenoses: Preliminary Findings

Author:

Lang Stefan1,Hoelter Philip1ORCID,Schmidt Manuel Alexander1ORCID,Mrochen Anne2,Kuramatsu Joji2,Kaethner Christian3,Roser Philipp3,Kowarschik Markus3ORCID,Doerfler Arnd1

Affiliation:

1. Department of Neuroradiology, University Hospital of Erlangen-Nuremberg, 91054 Erlangen, Germany

2. Department of Neurology, University Hospital of Erlangen-Nuremberg, 91054 Erlangen, Germany

3. Siemens Healthcare GmbH, Advanced Therapies, Innovation, Siemensstraße 1, 91301 Forchheim, Germany

Abstract

Background and purpose: Based on artificial intelligence (AI), 3D angiography (3DA) is a novel postprocessing algorithm for “DSA-like” 3D imaging of cerebral vasculature. Because 3DA requires neither mask runs nor digital subtraction as the current standard 3D-DSA does, it has the potential to cut the patient dose by 50%. The object was to evaluate 3DA’s diagnostic value for visualization of intracranial artery stenoses (IAS) compared to 3D-DSA. Materials and methods: 3D-DSA datasets of IAS (nIAS = 10) were postprocessed using conventional and prototype software (Siemens Healthineers AG, Erlangen, Germany). Matching reconstructions were assessed by two experienced neuroradiologists in consensus reading, considering image quality (IQ), vessel diameters (VD1/2), vessel-geometry index (VGI = VD1/VD2), and specific qualitative/quantitative parameters of IAS (e.g., location, visual IAS grading [low-/medium-/high-grade] and intra-/poststenotic diameters [dintra-/poststenotic in mm]). Using the NASCET criteria, the percentual degree of luminal restriction was calculated. Results: In total, 20 angiographic 3D volumes (n3DA = 10; n3D-DSA = 10) were successfully reconstructed with equivalent IQ. Assessment of the vessel geometry in 3DA datasets did not differ significantly from 3D-DSA (VD1: r = 0.994, p = 0.0001; VD2:r = 0.994, p = 0.0001; VGI: r = 0.899, p = 0.0001). Qualitative analysis of IAS location (3DA/3D-DSA:nICA/C4 = 1, nICA/C7 = 1, nMCA/M1 = 4, nVA/V4 = 2, nBA = 2) and the visual IAS grading (3DA/3D-DSA:nlow-grade = 3, nmedium-grade = 5, nhigh-grade = 2) revealed identical results for 3DA and 3D-DSA, respectively. Quantitative IAS assessment showed a strong correlation regarding intra-/poststenotic diameters (rdintrastenotic = 0.995, pdintrastenotic = 0.0001; rdpoststenotic = 0.995, pdpoststenotic = 0.0001) and the percentual degree of luminal restriction (rNASCET 3DA = 0.981; pNASCET 3DA = 0.0001). Conclusions: The AI-based 3DA is a resilient algorithm for the visualization of IAS and shows comparable results to 3D-DSA. Hence, 3DA is a promising new method that allows a considerable patient-dose reduction, and its clinical implementation would be highly desirable.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3