Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients

Author:

Lavi Yael1ORCID,Vojdani Aristo23ORCID,Halpert Gilad45,Sharif Kassem146,Ostrinski Yuri4,Zyskind Israel78ORCID,Lattin Miriam9,Zimmerman Jason8ORCID,Silverberg Jonathan10ORCID,Rosenberg Avi11,Shoenfeld Yehuda14,Amital Howard146ORCID

Affiliation:

1. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

2. Immunosciences Lab, Inc., Los Angeles, CA 90035, USA

3. Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA

4. Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

5. Department of Molecular Biology, Ariel University, Ariel 40700, Israel

6. Department of Medicine B, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel

7. Department of Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA

8. Maimonides Medical Center, Brooklyn, NY 11219, USA

9. Department of Biology, Yeshiva University, New York, NY 10461, USA

10. Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA

11. Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA

Abstract

Background: COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery—a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. Aim and methods: To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid β peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [n = 74], severe [n = 65], and requiring supplemental oxygen [n = 32]). Results: COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid β peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid β peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. Conclusions: Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients.

Funder

Yaron and Gila Shemie Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3