Effect of Mutated ids Overexpression on IDS Enzyme Activity and Developmental Phenotypes in Zebrafish Embryos: A Valuable Index for Assessing Critical Point-Mutations Associated with Mucopolysaccharidosis Type II Occurrence in Humans

Author:

Lin Cheng-YungORCID,Lin Hsiang-YuORCID,Chuang Chih-KuangORCID,Zhang Po-Hsiang,Tu Ru-Yi,Lin Shuan-Pei,Tsai Huai-Jen

Abstract

Mucopolysaccharidosis type II (MPS II) is an X-linked disorder resulting from a deficiency in iduronate 2-sulfatase (IDS), which is reported to be caused by gene mutations in the iduronate 2-sulfatase (IDS) gene. Many IDS mutation sites have not yet had their causal relationship with MPS II characterized. We employed a gain-of-function strategy whereby we microinjected different mutated zebrafish ids (z-ids) mRNAs corresponded to human IDS gene into zebrafish embryos, and then measured their total IDS enzymatic activity and observed the occurrence of defective phenotypes during embryonic development. We examined three known mutation sites for human IDS genes (h-IDS) associated with MPS II symptoms, including h-IDS-P86L, -S333L and -R468W, which corresponded to z-ids-P80L, -S327L and -R454W. When these three mutated z-ids mRNAs were overexpressed in zebrafish embryos, the IDS enzymatic activity of the total proteins extracted from the injected embryos was not increased compared with the endogenous IDS of the untreated embryos, which suggests that the IDS enzymatic activity of these three mutated z-ids was totally lost, as expected. Additionally, we observed defective phenotypes in these injected embryos, resulting from the failed IDS enzyme breakdown, which, in turn, has a dominant negative effect on the endogenous wild-type IDS function. These phenotypes were similar to the clinical symptoms observed in MPS II pathogenesis. We further studied six uncharacterized IDS mutation sites as identified by the Taiwanese MPS newborn screening programs. We propose a novel IDS enzyme activity assay combined with phenotypic observation in zebrafish embryos, as an alternative platform for quickly providing a valuable index for preliminarily assessment of any identified IDS point mutation gene that has not yet been characterized, in the context of its role in MPS II development.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3