Analyzing Malaria Disease Using Effective Deep Learning Approach

Author:

Sriporn KritORCID,Tsai Cheng-FaORCID,Tsai Chia-En,Wang Paohsi

Abstract

Medical tools used to bolster decision-making by medical specialists who offer malaria treatment include image processing equipment and a computer-aided diagnostic system. Malaria images can be employed to identify and detect malaria using these methods, in order to monitor the symptoms of malaria patients, although there may be atypical cases that need more time for an assessment. This research used 7000 images of Xception, Inception-V3, ResNet-50, NasNetMobile, VGG-16 and AlexNet models for verification and analysis. These are prevalent models that classify the image precision and use a rotational method to improve the performance of validation and the training dataset with convolutional neural network models. Xception, using the state of the art activation function (Mish) and optimizer (Nadam), improved the effectiveness, as found by the outcomes of the convolutional neural model evaluation of these models for classifying the malaria disease from thin blood smear images. In terms of the performance, recall, accuracy, precision, and F1 measure, a combined score of 99.28% was achieved. Consequently, 10% of all non-dataset training and testing images were evaluated utilizing this pattern. Notable aspects for the improvement of a computer-aided diagnostic to produce an optimum malaria detection approach have been found, supported by a 98.86% accuracy level.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review;Tropical Medicine and Infectious Disease;2024-08-23

2. Computer-Aided Diagnosis Systems for Automatic Malaria Parasite Detection and Classification: A Systematic Review;Electronics;2024-08-11

3. Machine and deep learning methods in identifying malaria through microscopic blood smear: A systematic review;Engineering Applications of Artificial Intelligence;2024-07

4. Deep Learning Advancements in Malaria Diagnosis;Advances in Medical Technologies and Clinical Practice;2024-06-30

5. Malaria detection using machine learning;Optics, Photonics, and Digital Technologies for Imaging Applications VIII;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3