Machine Learning Algorithm: Texture Analysis in CNO and Application in Distinguishing CNO and Bone Marrow Growth-Related Changes on Whole-Body MRI

Author:

Forestieri Marta1,Napolitano Antonio2,Tomà Paolo1ORCID,Bascetta Stefano1,Cirillo Marco1,Tagliente Emanuela2,Fracassi Donatella2ORCID,D’Angelo Paola1,Casazza Ines1

Affiliation:

1. Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy

2. Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy

Abstract

Objective: The purpose of this study is to analyze the texture characteristics of chronic non-bacterial osteomyelitis (CNO) bone lesions, identified as areas of altered signal intensity on short tau inversion recovery (STIR) sequences, and to distinguish them from bone marrow growth-related changes through Machine Learning (ML) and Deep Learning (DL) analysis. Materials and methods: We included a group of 66 patients with confirmed diagnosis of CNO and a group of 28 patients with suspected extra-skeletal systemic disease. All examinations were performed on a 1.5 T MRI scanner. Using the opensource 3D Slicer software version 4.10.2, the ROIs on CNO lesions and on the red bone marrow were sampled. Texture analysis (TA) was carried out using Pyradiomics. We applied an optimization search grid algorithm on nine classic ML classifiers and a Deep Learning (DL) Neural Network (NN). The model’s performance was evaluated using Accuracy (ACC), AUC-ROC curves, F1-score, Positive Predictive Value (PPV), Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE). Furthermore, we used Shapley additive explanations to gain insight into the behavior of the prediction model. Results: Most predictive characteristics were selected by Boruta algorithm for each combination of ROI sequences for the characterization and classification of the two types of signal hyperintensity. The overall best classification result was obtained by the NN with ACC = 0.91, AUC = 0.93 with 95% CI 0.91–0.94, F1-score = 0.94 and PPV = 93.8%. Between classic ML methods, ensemble learners showed high model performance; specifically, the best-performing classifier was the Stack (ST) with ACC = 0.85, AUC = 0.81 with 95% CI 0.8–0.84, F1-score = 0.9, PPV = 90%. Conclusions: Our results show the potential of ML methods in discerning edema-like lesions, in particular by distinguishing CNO lesions from hematopoietic bone marrow changes in a pediatric population. The Neural Network showed the overall best results, while a Stacking classifier, based on Gradient Boosting and Random Forest as principal estimators and Logistic Regressor as final estimator, achieved the best results between the other ML methods.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3