Gastro-BaseNet: A Specialized Pre-Trained Model for Enhanced Gastroscopic Data Classification and Diagnosis of Gastric Cancer and Ulcer

Author:

Lee Gi Pyo1ORCID,Kim Young Jae2ORCID,Park Dong Kyun3,Kim Yoon Jae3,Han Su Kyeong4,Kim Kwang Gi2ORCID

Affiliation:

1. Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21565, Republic of Korea

2. Department of Biomedical Engineering, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea

3. Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea

4. Health IT Research Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea

Abstract

Most of the development of gastric disease prediction models has utilized pre-trained models from natural data, such as ImageNet, which lack knowledge of medical domains. This study proposes Gastro-BaseNet, a classification model trained using gastroscopic image data for abnormal gastric lesions. To prove performance, we compared transfer-learning based on two pre-trained models (Gastro-BaseNet and ImageNet) and two training methods (freeze and fine-tune modes). The effectiveness was verified in terms of classification at the image-level and patient-level, as well as the localization performance of lesions. The development of Gastro-BaseNet had demonstrated superior transfer learning performance compared to random weight settings in ImageNet. When developing a model for predicting the diagnosis of gastric cancer and gastric ulcers, the transfer-learned model based on Gastro-BaseNet outperformed that based on ImageNet. Furthermore, the model’s performance was highest when fine-tuning the entire layer in the fine-tune mode. Additionally, the trained model was based on Gastro-BaseNet, which showed higher localization performance, which confirmed its accurate detection and classification of lesions in specific locations. This study represents a notable advancement in the development of image analysis models within the medical field, resulting in improved diagnostic predictive accuracy and aiding in making more informed clinical decisions in gastrointestinal endoscopy.

Funder

National IT Industry Promotion Agency

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3