Experimental Examination of Conventional, Semi-Automatic, and Automatic Volumetry Tools for Segmentation of Pulmonary Nodules in a Phantom Study

Author:

Hlouschek Julian1,König Britta2,Bos Denise3,Santiago Alina1,Zensen Sebastian3ORCID,Haubold Johannes3,Pöttgen Christoph1ORCID,Herz Andreas1,Opitz Marcel3ORCID,Wetter Axel4,Guberina Maja1ORCID,Stuschke Martin1ORCID,Zylka Waldemar5ORCID,Kühl Hilmar6,Guberina Nika1

Affiliation:

1. Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany

2. Department of Radiology, University Hospital Muenster (UKM), Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany

3. Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany

4. Department of Diagnostic and Interventional Radiology, Neuroradiology, Asklepios Klinikum Harburg, Eißendorfer Pferdeweg 52, 21075 Hamburg, Germany

5. Westphalian University, Campus Gelsenkirchen, Neidenburger Str. 43, 45897 Gelsenkirchen, Germany

6. Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Bürgermeister-Schmelzing-Str. 90, 47475 Kamp-Lintfort, Germany

Abstract

The aim of this study is to examine the precision of semi-automatic, conventional and automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The phantom is a life-size anatomical chest model with pulmonary nodules representing solid and subsolid metastases. Gross tumor volumes (GTVis) were contoured using various approaches: manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush function; (II) flood-fill function; and (III) image-thresholding function. Furthermore, a deep-learning algorithm for automatic contouring was applied (IV). An intermodality comparison of the above-mentioned strategies for contouring GTVis was performed. For the mean GTVref (standard deviation (SD)), the interquartile range (IQR)) was 0.68 mL (0.33; 0.34–1.1). GTV segmentation was distributed as follows: (I) 0.61 mL (0.27; 0.36–0.92); (II) 0.41 mL (0.28; 0.23–0.63); (III) 0.65 mL (0.35; 0.32–0.90); and (IV) 0.61 mL (0.29; 0.33–0.95). GTVref was found to be significantly correlated with GTVis (I) p < 0.001, r = 0.989 (III) p = 0.001, r = 0.916, and (IV) p < 0.001, r = 0.986, but not with (II) p = 0.091, r = 0.595. The Sørensen–Dice indices for the semi-automatic tools were 0.74 (I), 0.57 (II) and 0.71 (III). For the semi-automatic, conventional segmentation tools evaluated, the adaptive-brush function (I) performed closest to the reference standard (0). The automatic deep learning tool (IV) showed high performance for auto-segmentation and was close to the reference standard. For high precision radiation therapy, visual control, and, where necessary, manual correction, are mandatory for all evaluated tools.

Funder

University of Duisburg-Essen

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3