Coherent Feature Extraction with Swarm Intelligence Based Hybrid Adaboost Weighted ELM Classification for Snoring Sound Classification

Author:

Prabhakar Sunil Kumar1,Rajaguru Harikumar2ORCID,Won Dong-Ok1ORCID

Affiliation:

1. Department of Artificial Intelligence Convergence, Chuncheon 24252, Republic of Korea

2. Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam 638401, India

Abstract

For patients suffering from obstructive sleep apnea and sleep-related breathing disorders, snoring is quite common, and it greatly interferes with the quality of life for them and for the people surrounding them. For diagnosing obstructive sleep apnea, snoring is used as a screening parameter, so the exact detection and classification of snoring sounds are quite important. Therefore, automated and very high precision snoring analysis and classification algorithms are required. In this work, initially the features are extracted from six different domains, such as time domain, frequency domain, Discrete Wavelet Transform (DWT) domain, sparse domain, eigen value domain, and cepstral domain. The extracted features are then selected using three efficient feature selection techniques, such as Golden Eagle Optimization (GEO), Salp Swarm Algorithm (SSA), and Refined SSA. The selected features are finally classified with the help of eight traditional machine learning classifiers and two proposed classifiers, such as the Firefly Algorithm-Weighted Extreme Learning Machine hybrid with Adaboost model (FA-WELM-Adaboost) and the Capuchin Search Algorithm-Weighted Extreme Learning Machine hybrid with Adaboost model (CSA-WELM-Adaboost). The analysis is performed on the MPSSC Interspeech dataset, and the best results are obtained when the DWT features with the refined SSA feature selection technique and FA-WELM-Adaboost hybrid classifier are utilized, reporting an Unweighted Average Recall (UAR) of 74.23%. The second-best results are obtained when DWT features are selected with the GEO feature selection technique and a CSA-WELM-Adaboost hybrid classifier is utilized, reporting an UAR of 73.86%.

Funder

Hallym University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3