Pre-Reconstruction Processing with the Cycle-Consist Generative Adversarial Network Combined with Attention Gate to Improve Image Quality in Digital Breast Tomosynthesis

Author:

Gomi Tsutomu1ORCID,Ishihara Kotomi2,Yamada Satoko1,Koibuchi Yukio3

Affiliation:

1. School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan

2. Department of Radiology, NHO Takasaki General Medical Center, Takasaki 370-0829, Gunma, Japan

3. Department of Breast and Endocrine Surgery, NHO Takasaki General Medical Center, Takasaki 370-0829, Gunma, Japan

Abstract

The current study proposed and evaluated “residual squeeze and excitation attention gate” (rSEAG), a novel network that can improve image quality by reducing distortion attributed to artifacts. This method was established by modifying the Cycle Generative Adversarial Network (cycleGAN)-based generator network using projection data for pre-reconstruction processing in digital breast tomosynthesis. Residual squeeze and excitation were installed in the bridge of the generator network, and the attention gate was installed in the skip connection between the encoder and decoder. Based on the radiation dose index (exposure index and division index) incident on the detector, the cases approved by the ethics committee and used for the study were classified as reference (675 projection images) and object (675 projection images). For the cases, unsupervised data containing a mixture of cases with and without masses were used. The cases were trained using cycleGAN with rSEAG and the conventional networks (ResUNet and U-Net). For testing, predictive processing was performed on cases (60 projection images) that were not used for learning. Images were generated using filtered backprojection reconstruction (kernel: Ramachandran and Lakshminarayanan) from projection data for testing data and without pre-reconstruction processing data (evaluation: in-focus plane). The distortion was evaluated using perception-based image quality evaluation (PIQE) analysis, texture analysis (feature: “Homogeneity” and “Contrast”), and a statistical model with a Gumbel distribution. PIQE has a low rSEAG value. Texture analysis showed that rSEAG and a network without cycleGAN were similar in terms of the “Contrast” feature. In dense breasts, ResUNet had the lowest “Contrast” feature and U-Net had differences between cases. The maximal variations in the Gumbel plot, rSEAG reduced the high-frequency ripple artifacts. In this study, rSEAG could improve distortion and reduce ripple artifacts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3