A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features

Author:

Ishtiaq Uzair12ORCID,Abdullah Erma Rahayu Mohd Faizal1,Ishtiaque Zubair3

Affiliation:

1. Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan

3. Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University, H91 T8NW Galway, Ireland

Abstract

One of the most prevalent chronic conditions that can result in permanent vision loss is diabetic retinopathy (DR). Diabetic retinopathy occurs in five stages: no DR, and mild, moderate, severe, and proliferative DR. The early detection of DR is essential for preventing vision loss in diabetic patients. In this paper, we propose a method for the detection and classification of DR stages to determine whether patients are in any of the non-proliferative stages or in the proliferative stage. The hybrid approach based on image preprocessing and ensemble features is the foundation of the proposed classification method. We created a convolutional neural network (CNN) model from scratch for this study. Combining Local Binary Patterns (LBP) and deep learning features resulted in the creation of the ensemble features vector, which was then optimized using the Binary Dragonfly Algorithm (BDA) and the Sine Cosine Algorithm (SCA). Moreover, this optimized feature vector was fed to the machine learning classifiers. The SVM classifier achieved the highest classification accuracy of 98.85% on a publicly available dataset, i.e., Kaggle EyePACS. Rigorous testing and comparisons with state-of-the-art approaches in the literature indicate the effectiveness of the proposed methodology.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3