Detection of Monkeypox Disease from Human Skin Images with a Hybrid Deep Learning Model

Author:

Uysal Fatih1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars TR 36100, Turkey

Abstract

Monkeypox, a virus transmitted from animals to humans, is a DNA virus with two distinct genetic lineages in central and eastern Africa. In addition to zootonic transmission through direct contact with the body fluids and blood of infected animals, monkeypox can also be transmitted from person to person through skin lesions and respiratory secretions of an infected person. Various lesions occur on the skin of infected individuals. This study has developed a hybrid artificial intelligence system to detect monkeypox in skin images. An open source image dataset was used for skin images. This dataset has a multi-class structure consisting of chickenpox, measles, monkeypox and normal classes. The data distribution of the classes in the original dataset is unbalanced. Various data augmentation and data preprocessing operations were applied to overcome this imbalance. After these operations, CSPDarkNet, InceptionV4, MnasNet, MobileNetV3, RepVGG, SE-ResNet and Xception, which are state-of-the-art deep learning models, were used for monkeypox detection. In order to improve the classification results obtained in these models, a unique hybrid deep learning model specific to this study was created by using the two highest-performing deep learning models and the long short-term memory (LSTM) model together. In this hybrid artificial intelligence system developed and proposed for monkeypox detection, test accuracy was 87% and Cohen’s kappa score was 0.8222.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3