Improving the Trustworthiness of Interactive Visualization Tools for Healthcare Data through a Medical Fuzzy Expert System

Author:

Albarrak Abdullah M.1ORCID

Affiliation:

1. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia

Abstract

Successful healthcare companies and illness diagnostics require data visualization. Healthcare and medical data analysis are needed to use compound information. Professionals often gather, evaluate, and monitor medical data to gauge risk, performance capability, tiredness, and adaptation to a medical diagnosis. Medical diagnosis data come from EMRs, software systems, hospital administration systems, laboratories, IoT devices, and billing and coding software. Interactive diagnosis data visualization tools enable healthcare professionals to identify trends and interpret data analytics results. Selecting the most trustworthy interactive visualization tool or application is crucial for the reliability of medical diagnosis data. Thus, this study examined the trustworthiness of interactive visualization tools for healthcare data analytics and medical diagnosis. The present study uses a scientific approach for evaluating the trustworthiness of interactive visualization tools for healthcare and medical diagnosis data and provides a novel idea and path for future healthcare experts. Our goal in this research was to make an idealness assessment of the trustworthiness impact of interactive visualization models under fuzzy conditions by using a medical fuzzy expert system based on an analytical network process and technique for ordering preference by similarity to ideal solutions. To eliminate the ambiguities that arose due to the multiple opinions of these experts and to externalize and organize information about the selection context of the interactive visualization models, the study used the proposed hybrid decision model. According to the results achieved through trustworthiness assessments of different visualization tools, BoldBI was found to be the most prioritized and trustworthy visualization tool among other alternatives. The suggested study would aid healthcare and medical professionals in interactive data visualization in identifying, selecting, prioritizing, and evaluating useful and trustworthy visualization-related characteristics, thereby leading to more accurate medical diagnosis profiles.

Funder

Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3