Development of a Machine Learning Based Web Application for Early Diagnosis of COVID-19 Based on Symptoms

Author:

Villavicencio Charlyn NayveORCID,Macrohon Julio JerisonORCID,Inbaraj Xavier Alphonse,Jeng Jyh-HorngORCID,Hsieh Jer-Guang

Abstract

Detecting the presence of a disease requires laboratory tests, testing kits, and devices; however, these were not always available on hand. This study proposes a new approach in disease detection using machine learning algorithms by analyzing symptoms experienced by a person without requiring laboratory tests. Six supervised machine learning algorithms such as J48 decision tree, random forest, support vector machine, k-nearest neighbors, naïve Bayes algorithms, and artificial neural networks were applied in the “COVID-19 Symptoms and Presence Dataset” from Kaggle. Through hyperparameter optimization and 10-fold cross validation, we attained the highest possible performance of each algorithm. A comparative analysis was performed according to accuracy, sensitivity, specificity, and area under the ROC curve. Results show that random forest, support vector machine, k-nearest neighbors, and artificial neural networks outweighed other algorithms by attaining 98.84% accuracy, 100% sensitivity, 98.79% specificity, and 98.84% area under the ROC curve. Finally, we developed a web application that will allow users to select symptoms currently being experienced, and use it to predict the presence of COVID-19 through the developed prediction model. Based on this mechanism, the proposed method can effectively predict the presence or absence of COVID-19 in a person immediately without using laboratory tests, kits, and devices in a real-time manner.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference49 articles.

1. Coronavirus Disease by World Health Organizationshttps://www.who.int/health-topics/coronavirus

2. COVID Live Update Worldometers Infohttps://www.worldometers.info/coronavirus/

3. COVID-19 Prediction Applying Supervised Machine Learning Algorithms with Comparative Analysis Using WEKA

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3