Liver Tumor Localization Based on YOLOv3 and 3D-Semantic Segmentation Using Deep Neural Networks

Author:

Amin JavariaORCID,Anjum Muhammad Almas,Sharif MuhammadORCID,Kadry SeifedineORCID,Nadeem AhmedORCID,Ahmad Sheikh F.

Abstract

Worldwide, more than 1.5 million deaths are occur due to liver cancer every year. The use of computed tomography (CT) for early detection of liver cancer could save millions of lives per year. There is also an urgent need for a computerized method to interpret, detect and analyze CT scans reliably, easily, and correctly. However, precise segmentation of minute tumors is a difficult task because of variation in the shape, intensity, size, low contrast of the tumor, and the adjacent tissues of the liver. To address these concerns, a model comprised of three parts: synthetic image generation, localization, and segmentation, is proposed. An optimized generative adversarial network (GAN) is utilized for generation of synthetic images. The generated images are localized by using the improved localization model, in which deep features are extracted from pre-trained Resnet-50 models and fed into a YOLOv3 detector as an input. The proposed modified model localizes and classifies the minute liver tumor with 0.99 mean average precision (mAp). The third part is segmentation, in which pre-trained Inceptionresnetv2 employed as a base-Network of Deeplabv3 and subsequently is trained on fine-tuned parameters with annotated ground masks. The experiments reflect that the proposed approach has achieved greater than 95% accuracy in the testing phase and it is proven that, in comparison to the recently published work in this domain, this research has localized and segmented the liver and minute liver tumor with more accuracy.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PSO-PSP-Net + InceptionV3: An optimized hyper-parameter tuned Computer-Aided Diagnostic model for liver tumor detection using CT scan slices;Biomedical Signal Processing and Control;2024-09

2. Differential CNN and KELM integration for accurate liver cancer detection;Biomedical Signal Processing and Control;2024-09

3. Comparative Analysis of Deep CNN and VGG-16 for Anomaly Detection;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

4. Liver Tumor Segmentation and Classification Using Deep Learning Methods;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

5. Liver tumor segmentation using G-Unet and the impact of preprocessing and postprocessing methods;Multimedia Tools and Applications;2024-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3