An Embedded System Using Convolutional Neural Network Model for Online and Real-Time ECG Signal Classification and Prediction

Author:

Caesarendra WahyuORCID,Hishamuddin Taufiq Aiman,Lai Daphne Teck ChingORCID,Husaini Asmah,Nurhasanah Lisa,Glowacz AdamORCID,Alfarisy Gusti Ahmad Fanshuri

Abstract

This paper presents an automatic ECG signal classification system that applied the Deep Learning (DL) model to classify four types of ECG signals. In the first part of our work, we present the model development. Four different classes of ECG signals from the PhysioNet open-source database were selected and used. This preliminary study used a Deep Learning (DL) technique namely Convolutional Neural Network (CNN) to classify and predict the ECG signals from four different classes: normal, sudden death, arrhythmia, and supraventricular arrhythmia. The classification and prediction process includes pulse extraction, image reshaping, training dataset, and testing process. In general, the training accuracy achieved up to 95% after 100 epochs. However, the prediction of each ECG single type shows a differentiation. Among the four classes, the results show that the predictions for sudden death ECG waveforms are the highest, i.e., 80 out of 80 samples are correct (100% accuracy). In contrast, the lowest is the prediction for normal sinus ECG waveforms, i.e., 74 out of 80 samples are correct (92.5% accuracy). This is due to the image features of normal sinus ECG waveforms being almost similar to the image features of supraventricular arrhythmia ECG waveforms. However, the model has been tuned to achieve an optimal prediction. In the second part, we presented the hardware implementation with the predictive model embedded in an NVIDIA Jetson Nanoprocessor for the online and real-time classification of ECG waveforms.

Funder

Universiti Brunei Darussalam

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3