Predicting Clinical Outcome in Acute Ischemic Stroke Using Parallel Multi-Parametric Feature Embedded Siamese Network

Author:

Osama Saira,Zafar KashifORCID,Sadiq Muhammad Usman

Abstract

Stroke is the second leading cause of death and disability worldwide, with ischemic stroke as the most common type. The preferred diagnostic procedure at the acute stage is the acquisition of multi-parametric magnetic resonance imaging (MRI). This type of imaging not only detects and locates the stroke lesion, but also provides the blood flow dynamics that helps clinicians in assessing the risks and benefits of reperfusion therapies. However, evaluating the outcome of these risky therapies beforehand is a complicated task due to the variability of lesion location, size, shape, and cerebral hemodynamics involved. Though the fully automated model for predicting treatment outcomes using multi-parametric imaging would be highly valuable in clinical settings, MRI datasets acquired at the acute stage are mostly scarce and suffer high class imbalance. In this paper, parallel multi-parametric feature embedded siamese network (PMFE-SN) is proposed that can learn with few samples and can handle skewness in multi-parametric MRI data. Moreover, five suitable evaluation metrics that are insensitive to imbalance are defined for this problem. The results show that PMFE-SN not only outperforms other state-of-the-art techniques in all these metrics but also can predict the class with a small number of samples, as well as the class with high number of samples. An accuracy of 0.67 on leave one cross out testing has been achieved with only two samples (minority class) for training and accuracy of 0.61 with the highest number of samples (majority class). In comparison, state-of-the-art using hand crafted features has 0 accuracy for minority class and 0.33 accuracy for majority class.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3