Obesity in Qatar: A Case-Control Study on the Identification of Associated Risk Factors

Author:

Khondaker Md. Tawkat IslamORCID,Khan Junaed YounusORCID,Refaee Mahmoud Ahmed,Hajj Nady El,Rahman M. SohelORCID,Alam TanvirORCID

Abstract

Obesity is an emerging public health problem in the Western world as well as in the Gulf region. Qatar, a tiny wealthy county, is among the top-ranked obese countries with a high obesity rate among its population. Compared to Qatar’s severity of this health crisis, only a limited number of studies focused on the systematic identification of potential risk factors using multimodal datasets. This study aims to develop machine learning (ML) models to distinguish healthy from obese individuals and reveal potential risk factors associated with obesity in Qatar. We designed a case-control study focused on 500 Qatari subjects, comprising 250 obese and 250 healthy individuals- the later forming the control group. We obtained the most extensive collection of clinical measurements for the Qatari population from the Qatar Biobank (QBB) repertoire, including (i) Physio-clinical Biomarkers, (ii) Spirometry, (iii) VICORDER, (iv) DXA scan composition, and (v) DXA scan densitometry readings. We developed several machine learning (ML) models to distinguish healthy from obese individuals and applied multiple feature selection techniques to identify potential risk factors associated with obesity. The proposed ML model achieved over 90% accuracy, thereby outperforming the existing state of the art models. The outcome from the ablation study on multimodal clinical datasets revealed physio-clinical measurements as the most influential risk factors in distinguishing healthy versus obese subjects. Furthermore, multiple feature ranking techniques confirmed known obesity risk factors (c-peptide, insulin, albumin, uric acid) and identified potential risk factors linked to obesity-related comorbidities such as diabetes (e.g., HbA1c, glucose), liver function (e.g., alkaline phosphatase, gamma-glutamyl transferase), lipid profile (e.g., triglyceride, low density lipoprotein cholesterol, high density lipoprotein cholesterol), etc. Most of the DXA measurements (e.g., bone area, bone mineral composition, bone mineral density, etc.) were significantly (p-value < 0.05) higher in the obese group. Overall, the net effect of hypothesized protective factors of obesity on bone mass seems to have surpassed the hypothesized harmful factors. All the identified factors warrant further investigation in a clinical setup to understand their role in obesity.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3