An Ensemble of Deep Learning Object Detection Models for Anatomical and Pathological Regions in Brain MRI

Author:

Terzi Ramazan12ORCID

Affiliation:

1. Department of Big Data and Artificial Intelligence, Digital Transformation Office of the Presidency of Republic of Türkiye, Ankara 06100, Turkey

2. Department of Computer Engineering, Amasya University, Amasya 05100, Turkey

Abstract

This paper proposes ensemble strategies for the deep learning object detection models carried out by combining the variants of a model and different models to enhance the anatomical and pathological object detection performance in brain MRI. In this study, with the help of the novel Gazi Brains 2020 dataset, five different anatomical parts and one pathological part that can be observed in brain MRI were identified, such as the region of interest, eye, optic nerves, lateral ventricles, third ventricle, and a whole tumor. Firstly, comprehensive benchmarking of the nine state-of-the-art object detection models was carried out to determine the capabilities of the models in detecting the anatomical and pathological parts. Then, four different ensemble strategies for nine object detectors were applied to boost the detection performance using the bounding box fusion technique. The ensemble of individual model variants increased the anatomical and pathological object detection performance by up to 10% in terms of the mean average precision (mAP). In addition, considering the class-based average precision (AP) value of the anatomical parts, an up to 18% AP improvement was achieved. Similarly, the ensemble strategy of the best different models outperformed the best individual model by 3.3% mAP. Additionally, while an up to 7% better FAUC, which is the area under the TPR vs. FPPI curve, was achieved on the Gazi Brains 2020 dataset, a 2% better FAUC score was obtained on the BraTS 2020 dataset. The proposed ensemble strategies were found to be much more efficient in finding the anatomical and pathological parts with a small number of anatomic objects, such as the optic nerve and third ventricle, and producing higher TPR values, especially at low FPPI values, compared to the best individual methods.

Funder

Digital Transformation Office of the Presidency of the Republic of Türkiye

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3