Neoteric Algorithm Using Cell Population Data (VCS Parameters) as a Rapid Screening Tool for Haematological Disorders

Author:

Ambayya AngeliORCID,Sathar Jameela,Hassan RoslineORCID

Abstract

Hitherto, there has been no comprehensive study on the usefulness of cell population data (CPD) parameters as a screening tool in the discrimination of non-neoplastic and neoplastic haematological disorders. Hence, we aimed to develop an algorithm derived from CPD parameters to enable robust screening of neoplastic from non-neoplastic samples and subsequently to aid in differentiating various neoplastic haematological disorders. In this study, the CPD parameters from 245 subtypes of leukaemia and lymphoma were compared against 1103 non-neoplastic cases, and those CPD parameters that were vigorous discriminants were selected for algorithm development. We devised a novel algorithm: [(SD-V-NE*MN-UMALS-LY*SD-AL2-MO)/MN-C-NE] to distinguish neoplastic from non-neoplastic cases. Following that, the single parameter MN-AL2-NE was used as a discriminant to rule out reactive cases from neoplastic cases. We then assessed CPD parameters that were useful in delineating leukaemia subtypes as follows: AML (SD-MALS-NE and SD-UMALS-NE), APL (MN-V-NE and SD-V-MO), ALL (MN-MALS-NE and MN-LMALS-NE) and CLL (SD-C-MO). Prospective studies were carried out to validate the algorithm and single parameter, MN-AL2-NE. We propose these CPD parameter-based discriminant strategies to be adopted as an initial screening and flagging system in the preliminary evaluation of leukocyte morphology.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3