Abstract
Plasma cell dyscrasias are a heterogeneous group of diseases characterized by the expansion of bone marrow plasma cells. Malignant transformation of plasma cells depends on the continuity of events resulting in a sequence of well-defined disease stages, from monoclonal gammopathy of undetermined significance (MGUS) through smoldering myeloma (SMM) to symptomatic multiple myeloma (MM). Evolution of a pre-malignant cell into a malignant cell, as well as further tumor progression, dissemination, and relapse, require development of multiple driver lesions conferring selective advantage of the dominant clone and allowing subsequent evolution under selective pressure of microenvironment and treatment. This process of natural selection facilitates tumor plasticity leading to the formation of genetically complex and heterogenous tumors that are notoriously difficult to treat. Better understanding of the mechanisms underlying tumor evolution in MM and identification of lesions driving the evolution from the premalignant clone is therefore a key to development of effective treatment and long-term disease control. Here, we review recent advances in clonal evolution patterns and genomic landscape dynamics of MM, focusing on their clinical implications.
Funder
Narodowe Centrum Badań i Rozwoju
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献