Using Machine Learning Algorithms to Predict Hospital Acquired Thrombocytopenia after Operation in the Intensive Care Unit: A Retrospective Cohort Study

Author:

Cheng Yisong,Chen ChaoyueORCID,Yang Jie,Yang Hao,Fu Min,Zhong Xi,Wang Bo,He Min,Hu Zhi,Zhang Zhongwei,Jin Xiaodong,Kang Yan,Wu QinORCID

Abstract

Hospital acquired thrombocytopenia (HAT) is a common hematological complication after surgery. This research aimed to develop and compare the performance of seven machine learning (ML) algorithms for predicting patients that are at risk of HAT after surgery. We conducted a retrospective cohort study which enrolled adult patients transferred to the intensive care unit (ICU) after surgery in West China Hospital of Sichuan University from January 2016 to December 2018. All subjects were randomly divided into a derivation set (70%) and test set (30%). ten-fold cross-validation was used to estimate the hyperparameters of ML algorithms during the training process in the derivation set. After ML models were developed, the sensitivity, specificity, area under the curve (AUC), and net benefit (decision analysis curve, DCA) were calculated to evaluate the performances of ML models in the test set. A total of 10,369 patients were included and in 1354 (13.1%) HAT occurred. The AUC of all seven ML models exceeded 0.7, the two highest were Gradient Boosting (GB) (0.834, 0.814–0.853, p < 0.001) and Random Forest (RF) (0.828, 0.807–0.848, p < 0.001). There was no difference between GB and RF (0.834 vs. 0.828, p = 0.293); however, these two were better than the remaining five models (p < 0.001). The DCA revealed that all ML models had high net benefits with a threshold probability approximately less than 0.6. In conclusion, we found that ML models constructed by multiple preoperative variables can predict HAT in patients transferred to ICU after surgery, which can improve risk stratification and guide management in clinical practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3