Convolutional Neural Networks for Classifying Laterality of Vestibular Schwannomas on Single MRI Slices—A Feasibility Study

Author:

Sager Philipp,Näf Lukas,Vu ErwinORCID,Fischer TimORCID,Putora Paul M.,Ehret FelixORCID,Fürweger Christoph,Schröder Christina,Förster RobertORCID,Zwahlen Daniel R.ORCID,Muacevic Alexander,Windisch PaulORCID

Abstract

Introduction: Many proposed algorithms for tumor detection rely on 2.5/3D convolutional neural networks (CNNs) and the input of segmentations for training. The purpose of this study is therefore to assess the performance of tumor detection on single MRI slices containing vestibular schwannomas (VS) as a computationally inexpensive alternative that does not require the creation of segmentations. Methods: A total of 2992 T1-weighted contrast-enhanced axial slices containing VS from the MRIs of 633 patients were labeled according to tumor location, of which 2538 slices from 539 patients were used for training a CNN (ResNet-34) to classify them according to the side of the tumor as a surrogate for detection and 454 slices from 94 patients were used for internal validation. The model was then externally validated on contrast-enhanced and non-contrast-enhanced slices from a different institution. Categorical accuracy was noted, and the results of the predictions for the validation set are provided with confusion matrices. Results: The model achieved an accuracy of 0.928 (95% CI: 0.869–0.987) on contrast-enhanced slices and 0.795 (95% CI: 0.702–0.888) on non-contrast-enhanced slices from the external validation cohorts. The implementation of Gradient-weighted Class Activation Mapping (Grad-CAM) revealed that the focus of the model was not limited to the contrast-enhancing tumor but to a larger area of the cerebellum and the cerebellopontine angle. Conclusions: Single-slice predictions might constitute a computationally inexpensive alternative to training 2.5/3D-CNNs for certain detection tasks in medical imaging even without the use of segmentations. Head-to-head comparisons between 2D and more sophisticated architectures could help to determine the difference in accuracy, especially for more difficult tasks.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3