Comparison of Next-Generation Sequencing and Fluorescence In Situ Hybridization for Detection of Segmental Chromosomal Aberrations in Neuroblastoma

Author:

Kim EojinORCID,Lee BoramORCID,Lee Ji WonORCID,Sung Ki Woong,Kim Jung-SunORCID

Abstract

The aim of this study was to compare next-generation sequencing (NGS) with the traditional fluorescence in situ hybridization (FISH) for detecting segmental chromosomal aberrations (SCAs) such as 1p deletion, 11q deletion and 17q gain, which are well-known predictive markers for adverse outcome in neuroblastoma. The tumor tissue obtained from 35 patients with neuroblastoma was tested by FISH and targeted NGS, which is specially designed to detect copy number alterations across the entire chromosomal region in addition to mutations in 353 cancer-related genes. All chromosomal copy number alterations were analyzed using the copy number variation plot derived from targeted NGS. FISH was performed to detect 1p deletion, 11q deletion and 17q gain. The copy numbers of 1p, 11q, and 17q obtained via NGS were correlated with those acquired via FISH. The SCAs determined by NGS were matched with those by FISH. Most 17q gain of mismatched cases detected by NGS alone showed a subsegmental gain of 17q. FISH revealed 11q deletion and 17q gain in a few tumor cells of two cases, which were not detected by NGS. NGS can be a sensitive complementary and alternative method to the conventional FISH for detecting SCAs.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3