Hyperparameter Tuning and Automatic Image Augmentation for Deep Learning-Based Angle Classification on Intraoral Photographs—A Retrospective Study

Author:

Cejudo Grano de Oro José Eduardo,Koch Petra JuliaORCID,Krois JoachimORCID,Garcia Cantu Ros AnselmoORCID,Patel Jay,Meyer-Lueckel Hendrik,Schwendicke FalkORCID

Abstract

We aimed to assess the effects of hyperparameter tuning and automatic image augmentation for deep learning-based classification of orthodontic photographs along the Angle classes. Our dataset consisted of 605 images of Angle class I, 1038 images of class II, and 408 images of class III. We trained ResNet architectures for classification of different combinations of learning rate and batch size. For the best combination, we compared the performance of models trained with and without automatic augmentation using 10-fold cross-validation. We used GradCAM to increase explainability, which can provide heat maps containing the salient areas relevant for the classification. The best combination of hyperparameters yielded a model with an accuracy of 0.63–0.64, F1-score 0.61–0.62, sensitivity 0.59–0.65, and specificity 0.80–0.81. For all metrics, it was apparent that there was an ideal corridor of batch size and learning rate combinations; smaller learning rates were associated with higher classification performance. Overall, the performance was highest for learning rates of around 1–3 × 10−6 and a batch size of eight, respectively. Additional automatic augmentation improved all metrics by 5–10% for all metrics. Misclassifications were most common between Angle classes I and II. GradCAM showed that the models employed features relevant for human classification, too. The choice of hyperparameters drastically affected the performance of deep learning models in orthodontics, and automatic image augmentation resulted in further improvements. Our models managed to classify the dental sagittal occlusion along Angle classes based on digital intraoral photos.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3