Multitask Learning for Mental Health: Depression, Anxiety, Stress (DAS) Using Wearables

Author:

Saylam Berrenur1ORCID,İncel Özlem Durmaz1ORCID

Affiliation:

1. Computer Engineering Department, Boğaziçi University, 34342 İstanbul, Türkiye

Abstract

This study investigates the prediction of mental well-being factors—depression, stress, and anxiety—using the NetHealth dataset from college students. The research addresses four key questions, exploring the impact of digital biomarkers on these factors, their alignment with conventional psychology literature, the time-based performance of applied methods, and potential enhancements through multitask learning. The findings reveal modality rankings aligned with psychology literature, validated against paper-based studies. Improved predictions are noted with temporal considerations, and further enhanced by multitasking. Mental health multitask prediction results show aligned baseline and multitask performances, with notable enhancements using temporal aspects, particularly with the random forest (RF) classifier. Multitask learning improves outcomes for depression and stress but not anxiety using RF and XGBoost.

Funder

Boğaziçi University Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3