Assessment of Sepsis Risk at Admission to the Emergency Department: Clinical Interpretable Prediction Model

Author:

Aygun Umran1,Yagin Fatma Hilal2ORCID,Yagin Burak2ORCID,Yasar Seyma2,Colak Cemil2ORCID,Ozkan Ahmet Selim3ORCID,Ardigò Luca Paolo4ORCID

Affiliation:

1. Department of Anesthesiology and Reanimation, Malatya Yesilyurt Hasan Calık State Hospital, Malatya 44929, Turkey

2. Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey

3. Department of Anesthesiology and Reanimation, Malatya Turgut Ozal University School of Medicine, Malatya 44210, Turkey

4. Department of Teacher Education, NLA University College, 0166 Oslo, Norway

Abstract

This study aims to develop an interpretable prediction model based on explainable artificial intelligence to predict bacterial sepsis and discover important biomarkers. A total of 1572 adult patients, 560 of whom were sepsis positive and 1012 of whom were negative, who were admitted to the emergency department with suspicion of sepsis, were examined. We investigated the performance characteristics of sepsis biomarkers alone and in combination for confirmed sepsis diagnosis using Sepsis-3 criteria. Three different tree-based algorithms—Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost)—were used for sepsis prediction, and after examining comprehensive performance metrics, descriptions of the optimal model were obtained with the SHAP method. The XGBoost model achieved accuracy of 0.898 (0.868–0.929) and area under the ROC curve (AUC) of 0.940 (0.898–0.980) with a 95% confidence interval. The five biomarkers for predicting sepsis were age, respiratory rate, oxygen saturation, procalcitonin, and positive blood culture. SHAP results revealed that older age, higher respiratory rate, procalcitonin, neutrophil–lymphocyte count ratio, C-reactive protein, plaque, leukocyte particle concentration, as well as lower oxygen saturation, systolic blood pressure, and hemoglobin levels increased the risk of sepsis. As a result, the Explainable Artificial Intelligence (XAI)-based prediction model can guide clinicians in the early diagnosis and treatment of sepsis, providing more effective sepsis management and potentially reducing mortality rates and medical costs.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3