Unlocking Precision Medicine for Prognosis of Chronic Kidney Disease Using Machine Learning

Author:

Dubey Yogita1ORCID,Mange Pranav1,Barapatre Yash1,Sable Bhargav1,Palsodkar Prachi2ORCID,Umate Roshan3ORCID

Affiliation:

1. Department of Electronics and Telecommunication Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India

2. Department of Electronics Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India

3. Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442001, India

Abstract

Chronic kidney disease (CKD) is a significant global health challenge that requires timely detection and accurate prognosis for effective treatment and management. The application of machine learning (ML) algorithms for CKD detection and prediction holds promising potential for improving patient outcomes. By incorporating key features which contribute to CKD, these algorithms enhance our ability to identify high-risk individuals and initiate timely interventions. This research highlights the importance of leveraging machine learning techniques to augment existing medical knowledge and improve the identification and management of kidney disease. In this paper, we explore the utilization of diverse ML algorithms, including gradient boost (GB), decision tree (DT), K-nearest neighbor (KNN), random forest (RF), histogram boost (HB), and XGBoost (XGB) to detect and predict chronic kidney disease (CKD). The aim is to improve early detection and prognosis, enhancing patient outcomes and reducing the burden on healthcare systems. We evaluated the performance of the ML algorithms using key metrics like accuracy, precision, recall, and F1 score. Additionally, we conducted feature significance analysis to identify the most influential characteristics in the detection and prediction of kidney disease. The dataset used for training and evaluation contained various clinical and demographic attributes of patients, including serum creatinine level, blood pressure, and age, among others. The proficiency analysis of the ML algorithms revealed consistent predictors across all models, with serum creatinine level, blood pressure, and age emerging as particularly effective in identifying individuals at risk of kidney disease. These findings align with established medical knowledge and emphasize the pivotal role of these attributes in early detection and prognosis. In conclusion, our study demonstrates the effectiveness of diverse machine learning algorithms in detecting and predicting kidney disease. The identification of influential predictors, such as serum creatinine level, blood pressure, and age, underscores their significance in early detection and prognosis. By leveraging machine learning techniques, we can enhance the accuracy and efficiency of kidney disease diagnosis and treatment, ultimately improving patient outcomes and healthcare system effectiveness.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kidney Disease Classification and Diagnosis: A Comprehensive Review of Current AI Techniques;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06

2. An effective role-oriented binary Walrus Grey Wolf approach for feature selection in early-stage chronic kidney disease detection;International Urology and Nephrology;2024-05-15

3. Improving Enhanced Clinical Decision Making : Chronic Kidney Disease Detection;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3