Emerging Technology-Driven Hybrid Models for Preventing and Monitoring Infectious Diseases: A Comprehensive Review and Conceptual Framework

Author:

Albahlal Bader1ORCID

Affiliation:

1. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia

Abstract

The emergence of the infectious diseases, such as the novel coronavirus, as a significant global health threat has emphasized the urgent need for effective treatments and vaccines. As infectious diseases become more common around the world, it is important to have strategies in place to prevent and monitor them. This study reviews hybrid models that incorporate emerging technologies for preventing and monitoring infectious diseases. It also presents a comprehensive review of the hybrid models employed for preventing and monitoring infectious diseases since the outbreak of COVID-19. The review encompasses models that integrate emerging and innovative technologies, such as blockchain, Internet of Things (IoT), big data, and artificial intelligence (AI). By harnessing these technologies, the hybrid system enables secure contact tracing and source isolation. Based on the review, a hybrid conceptual framework model proposes a hybrid model that incorporates emerging technologies. The proposed hybrid model enables effective contact tracing, secure source isolation using blockchain technology, IoT sensors, and big data collection. A hybrid model that incorporates emerging technologies is proposed as a comprehensive approach to preventing and monitoring infectious diseases. With continued research on and the development of the proposed model, the global efforts to effectively combat infectious diseases and safeguard public health will continue.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3