Non-Invasive Prediction of Choledocholithiasis Using 1D Convolutional Neural Networks and Clinical Data

Author:

Mena-Camilo Enrique1ORCID,Salazar-Colores Sebastián2ORCID,Aceves-Fernández Marco Antonio1ORCID,Lozada-Hernández Edgard Efrén3ORCID,Ramos-Arreguín Juan Manuel1ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico

2. Centro de Investigaciones en Óptica, León 37150, Mexico

3. Hospital Regional de Alta Especialidad del Bajío, León 37660, Mexico

Abstract

This paper introduces a novel one-dimensional convolutional neural network that utilizes clinical data to accurately detect choledocholithiasis, where gallstones obstruct the common bile duct. Swift and precise detection of this condition is critical to preventing severe complications, such as biliary colic, jaundice, and pancreatitis. This cutting-edge model was rigorously compared with other machine learning methods commonly used in similar problems, such as logistic regression, linear discriminant analysis, and a state-of-the-art random forest, using a dataset derived from endoscopic retrograde cholangiopancreatography scans performed at Olive View–University of California, Los Angeles Medical Center. The one-dimensional convolutional neural network model demonstrated exceptional performance, achieving 90.77% accuracy and 92.86% specificity, with an area under the curve of 0.9270. While the paper acknowledges potential areas for improvement, it emphasizes the effectiveness of the one-dimensional convolutional neural network architecture. The results suggest that this one-dimensional convolutional neural network approach could serve as a plausible alternative to endoscopic retrograde cholangiopancreatography, considering its disadvantages, such as the need for specialized equipment and skilled personnel and the risk of postoperative complications. The potential of the one-dimensional convolutional neural network model to significantly advance the clinical diagnosis of this gallstone-related condition is notable, offering a less invasive, potentially safer, and more accessible alternative.

Funder

Mexican National Council of Humanities Science and Technology

Optics Research Center

Publisher

MDPI AG

Reference40 articles.

1. Prevalence of gallstone disease in Mexico;Jessurun;Dig. Dis. Sci.,1993

2. Factores de riesgo de la coledocolitiasis asintomática; experiencia en el Hospital General de México;Cir. Gen.,2018

3. Eficacia de los criterios predictores de coledocolitiasis de la ASGE con hallazgos en CPRE;Endoscopia,2022

4. Li, S., Guizzetti, L., Ma, C., Shaheen, A.A., Dixon, E., Ball, C., Wani, S., and Forbes, N. (2023). Epidemiology and outcomes of choledocholithiasis and cholangitis in the United States: Trends and urban-rural variations. BMC Gastroenterol., 23.

5. Prevalence, Risk Factors, and Complications of Cholelithiasis in Adults with Short Bowel Syndrome: A Longitudinal Cohort Study;Gao;Front. Nutr.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3