Artificial Intelligence-Powered Imaging Biomarker Based on Mammography for Breast Cancer Risk Prediction

Author:

Park Eun Kyung1ORCID,Lee Hyeonsoo2ORCID,Kim Minjeong2,Kim Taesoo2,Kim Junha2,Kim Ki Hwan2,Kooi Thijs2,Chang Yoosoo345ORCID,Ryu Seungho345

Affiliation:

1. Department of Radiology, We Comfortable Clinic, Seoul 07327, Republic of Korea

2. Lunit Inc., Seoul 06241, Republic of Korea

3. Center of Cohort Studies, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 04514, Republic of Korea

4. Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea

5. Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea

Abstract

The purposes of this study were to develop an artificial intelligence (AI) model for future breast cancer risk prediction based on mammographic images, investigate the feasibility of the AI model, and compare the AI model, clinical statistical risk models, and Mirai, a state of-the art deep learning algorithm based on screening mammograms for 1–5-year breast cancer risk prediction. We trained and developed a deep learning model using a total of 36,995 serial mammographic examinations from 21,438 women (cancer-enriched mammograms, 17.5%). To determine the feasibility of the AI prediction model, mammograms and detailed clinical information were collected. C-indices and area under the receiver operating characteristic curves (AUCs) for 1–5-year outcomes were obtained. We compared the AUCs of our AI prediction model, Mirai, and clinical statistical risk models, including the Tyrer–Cuzick (TC) model and Gail model, using DeLong’s test. A total of 16,894 mammograms were independently collected for external validation, of which 4002 were followed by a cancer diagnosis within 5 years. Our AI prediction model obtained a C-index of 0.76, with AUCs of 0.90, 0.84, 0.81, 0.78, and 0.81, to predict the 1–5-year risks. Our AI prediction model showed significantly higher AUCs than those of the TC model (AUC: 0.57; p < 0.001) and Gail model (AUC: 0.52; p < 0.001), and achieved similar performance to Mirai. The deep learning AI model using mammograms and AI-powered imaging biomarkers has substantial potential to advance accurate breast cancer risk prediction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3