Few-Shot Learning for Medical Image Segmentation Using 3D U-Net and Model-Agnostic Meta-Learning (MAML)

Author:

Alsaleh Aqilah M.12ORCID,Albalawi Eid1ORCID,Algosaibi Abdulelah1ORCID,Albakheet Salman S.3ORCID,Khan Surbhi Bhatia45

Affiliation:

1. College of Computer Science and Information Technology, King Faisal University, Al Hofuf 400-31982, AlAhsa, Saudi Arabia

2. Department of Information Technology, AlAhsa Health Cluster, Al Hofuf 3158-36421, AlAhsa, Saudi Arabia

3. Department of Radiology, King Faisal General Hospital, Al Hofuf 36361, AlAhsa, Saudi Arabia

4. Department of Data Science, School of Science Engineering and Environment, University of Salford, Manchester M5 4WT, UK

5. Department of Electrical and Computer Engineering, Lebanese American University, Byblos P.O. Box 13-5053, Lebanon

Abstract

Deep learning has attained state-of-the-art results in general image segmentation problems; however, it requires a substantial number of annotated images to achieve the desired outcomes. In the medical field, the availability of annotated images is often limited. To address this challenge, few-shot learning techniques have been successfully adapted to rapidly generalize to new tasks with only a few samples, leveraging prior knowledge. In this paper, we employ a gradient-based method known as Model-Agnostic Meta-Learning (MAML) for medical image segmentation. MAML is a meta-learning algorithm that quickly adapts to new tasks by updating a model’s parameters based on a limited set of training samples. Additionally, we use an enhanced 3D U-Net as the foundational network for our models. The enhanced 3D U-Net is a convolutional neural network specifically designed for medical image segmentation. We evaluate our approach on the TotalSegmentator dataset, considering a few annotated images for four tasks: liver, spleen, right kidney, and left kidney. The results demonstrate that our approach facilitates rapid adaptation to new tasks using only a few annotated images. In 10-shot settings, our approach achieved mean dice coefficients of 93.70%, 85.98%, 81.20%, and 89.58% for liver, spleen, right kidney, and left kidney segmentation, respectively. In five-shot sittings, the approach attained mean Dice coefficients of 90.27%, 83.89%, 77.53%, and 87.01% for liver, spleen, right kidney, and left kidney segmentation, respectively. Finally, we assess the effectiveness of our proposed approach on a dataset collected from a local hospital. Employing five-shot sittings, we achieve mean Dice coefficients of 90.62%, 79.86%, 79.87%, and 78.21% for liver, spleen, right kidney, and left kidney segmentation, respectively.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3