Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging

Author:

Kalantar Reza12ORCID,Curcean Sebastian3,Winfield Jessica M.12,Lin Gigin4ORCID,Messiou Christina12,Blackledge Matthew D.12ORCID,Koh Dow-Mu12

Affiliation:

1. Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK

2. Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK

3. Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania

4. Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Guishan, Taoyuan 333, Taiwan

Abstract

T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framework that uses dilated convolutions and shared residual connections for the separate encoding of multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of architectural experiments to evaluate the tumor segmentation performance based on multiparametric input channels and different feature encoding configurations. All experiments were performed on a cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient (ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval (CI), 0.595–0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568–0.776), although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using 3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors and independent contextual learning improved the model’s ability to reduce the boundary effects and distortion of DWI, leading to improved segmentation performance. Our findings could have significant implications for the development of robust and generalizable models that can extend to other multi-modal segmentation applications.

Funder

National Institute for Health and Care Research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust

The Institute of Cancer Research

Royal Marsden Cancer Charity

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3