The Complexity of the Arterial Blood Pressure Regulation during the Stress Test

Author:

Qammar Naseha WafaORCID,Orinaitė UgnėORCID,Šiaučiūnaitė VaivaORCID,Vainoras AlfonsasORCID,Šakalytė Gintarė,Ragulskis MinvydasORCID

Abstract

In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference49 articles.

1. Towards understanding pathophysiology in critical care: The human body as a complex system;Clermont,2001

2. Human Physiology;Pocock,2013

3. Širdies Ritmo Autonominis Reguliavimas: Mechanizmai, Vertinimas, Klinikinė Reikšmė;Žemaitytė,1997

4. Coronary endothelial dysfunction of isolated hearts subjected to prolonged cold storage: patterns and contributing factors

5. NEURAL CONTROL OF MUSCLE BLOOD FLOW: IMPORTANCE DURING DYNAMIC EXERCISE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3