Feasibility of 18F-Fluorocholine PET for Evaluating Skeletal Muscle Atrophy in a Starved Rat Model

Author:

Park Sun MiORCID,Kim Jisu,Baek Suji,Jeon Joo-YeongORCID,Lee Sang Ju,Kang Seo Young,Yoo Min Young,Yoon Hai-JeonORCID,Kwon Seung Hae,Lim KiwonORCID,Oh Seung JunORCID,Kim Bom SahnORCID,Lee Kang Pa,Moon Byung Seok

Abstract

Imaging techniques for diagnosing muscle atrophy and sarcopenia remain insufficient, although various advanced diagnostic methods have been established. We explored the feasibility of 18F-fluorocholine (18F-FCH) positron emission tomography/computed tomography (PET/CT) for evaluating skeletal muscle atrophy, as an imaging technique that tracks choline level changes in muscles. Cell uptake in L6 cells by 18F-FCH was performed in a complete medium containing serum (untreated group, UN) and a serum-free medium (starved group, ST). Small-animal-dedicated PET/CT imaging with 18F-FCH was examined in in-vivo models with rats that were starved for 2 days to cause muscle atrophy. After the hind limbs were dissected, starvation-induced in-vivo models were anatomically confirmed by reverse-transcription polymerase chain reaction to evaluate the expression levels of the atrophy markers muscle RING-finger protein-1 (MuRF-1) and atrogin-1. 18F-FCH uptake was lower in the starvation-induced cells than in the untreated group, and in-vivo PET uptake also revealed a similar tendency (the average standardized uptake value (SUVmean) = 0.26 ± 0.06 versus 0.37 ± 0.07, respectively). Furthermore, the expression levels of MuRF-1 and atrogin-1 mRNA were significantly increased in the starvation-induced muscle atrophy of rats compared to the untreated group. 18F-FCH PET/CT may be a promising tool for diagnosing skeletal muscle atrophy.

Funder

Konkuk University

Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3