Abstract
High annotation costs are a substantial bottleneck in applying deep learning architectures to clinically relevant use cases, substantiating the need for algorithms to learn from unlabeled data. In this work, we propose employing self-supervised methods. To that end, we trained with three self-supervised algorithms on a large corpus of unlabeled dental images, which contained 38K bitewing radiographs (BWRs). We then applied the learned neural network representations on tooth-level dental caries classification, for which we utilized labels extracted from electronic health records (EHRs). Finally, a holdout test-set was established, which consisted of 343 BWRs and was annotated by three dental professionals and approved by a senior dentist. This test-set was used to evaluate the fine-tuned caries classification models. Our experimental results demonstrate the obtained gains by pretraining models using self-supervised algorithms. These include improved caries classification performance (6 p.p. increase in sensitivity) and, most importantly, improved label-efficiency. In other words, the resulting models can be fine-tuned using few labels (annotations). Our results show that using as few as 18 annotations can produce ≥45% sensitivity, which is comparable to human-level diagnostic performance. This study shows that self-supervision can provide gains in medical image analysis, particularly when obtaining labels is costly and expensive.
Funder
Deutsche Forschungsgemeinschaft
Federal Ministry of Education and Research
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献