Effects of Different Scan Duration on Brain Effective Connectivity among Default Mode Network Nodes

Author:

Abdul Wahab Nor Shafiza,Yahya NoorazrulORCID,Yusoff Ahmad Nazlim,Zakaria Rozman,Thanabalan Jegan,Othman ElzaORCID,Bee Hong Soon,Athi Kumar Ramesh Kumar,Manan Hanani AbdulORCID

Abstract

Background: Resting-state functional magnetic resonance imaging (rs-fMRI) can evaluate brain functional connectivity without requiring subjects to perform a specific task. This rs-fMRI is very useful in patients with cognitive decline or unable to respond to tasks. However, long scan durations have been suggested to measure connectivity between brain areas to produce more reliable results, which are not clinically optimal. Therefore, this study aims to evaluate a shorter scan duration and compare the scan duration of 10 and 15 min using the rs-fMRI approach. Methods: Twenty-one healthy male and female participants (seventeen right-handed and four left-handed), with ages ranging between 21 and 60 years, were recruited. All participants underwent both 10 and 15 min of rs-fMRI scans. The present study evaluated the default mode network (DMN) areas for both scan durations. The areas involved were the posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), left inferior parietal cortex (LIPC), and right inferior parietal cortex (RIPC). Fifteen causal models were constructed and inverted using spectral dynamic causal modelling (spDCM). The models were compared using Bayesian Model Selection (BMS) for group studies. Result: The BMS results indicated that the fully connected model was the winning model among 15 competing models for both 10 and 15 min scan durations. However, there was no significant difference in effective connectivity among the regions of interest between the 10 and 15 min scans. Conclusion: Scan duration in the range of 10 to 15 min is sufficient to evaluate the effective connectivity within the DMN region. In frail subjects, a shorter scan duration is more favourable.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3