Abstract
Differentiating hepatocellular carcinoma (HCC) from other primary liver malignancies in the Liver Imaging Reporting and Data System (LI-RADS) M (LR-M) tumours noninvasively is critical for patient treatment options, but visual evaluation based on medical images is a very challenging task. This study aimed to evaluate whether magnetic resonance imaging (MRI) models based on radiomics features could further improve the ability to classify LR-M tumour subtypes. A total of 102 liver tumours were defined as LR-M by two radiologists based on LI-RADS and were confirmed to be HCC (n = 31) and non-HCC (n = 71) by surgery. A radiomics signature was constructed based on reproducible features using the max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression algorithms with tenfold cross-validation. Logistic regression modelling was applied to establish different models based on T2-weighted imaging (T2WI), arterial phase (AP), portal vein phase (PVP), and combined models. These models were verified independently in the validation cohort. The area under the curve (AUC) of the models based on T2WI, AP, PVP, T2WI + AP, T2WI + PVP, AP + PVP, and T2WI + AP + PVP were 0.768, 0.838, 0.778, 0.880, 0.818, 0.832, and 0.884, respectively. The combined model based on T2WI + AP + PVP showed the best performance in the training cohort and validation cohort. The discrimination efficiency of each radiomics model was significantly better than that of junior radiologists’ visual assessment (p < 0.05; Delong). Therefore, the MRI-based radiomics models had a good ability to discriminate between HCC and non-HCC in LR-M tumours, providing more options to improve the accuracy of LI-RADS classification.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献