Bio-Imaging-Based Machine Learning Algorithm for Breast Cancer Detection

Author:

Safdar Sadia,Rizwan Muhammad,Gadekallu Thippa ReddyORCID,Javed Abdul RehmanORCID,Rahmani Mohammad Khalid ImamORCID,Jawad Khurram,Bhatia SurbhiORCID

Abstract

Breast cancer is one of the most widespread diseases in women worldwide. It leads to the second-largest mortality rate in women, especially in European countries. It occurs when malignant lumps that are cancerous start to grow in the breast cells. Accurate and early diagnosis can help in increasing survival rates against this disease. A computer-aided detection (CAD) system is necessary for radiologists to differentiate between normal and abnormal cell growth. This research consists of two parts; the first part involves a brief overview of the different image modalities, using a wide range of research databases to source information such as ultrasound, histography, and mammography to access various publications. The second part evaluates different machine learning techniques used to estimate breast cancer recurrence rates. The first step is to perform preprocessing, including eliminating missing values, data noise, and transformation. The dataset is divided as follows: 60% of the dataset is used for training, and the rest, 40%, is used for testing. We focus on minimizing type one false-positive rate (FPR) and type two false-negative rate (FNR) errors to improve accuracy and sensitivity. Our proposed model uses machine learning techniques such as support vector machine (SVM), logistic regression (LR), and K-nearest neighbor (KNN) to achieve better accuracy in breast cancer classification. Furthermore, we attain the highest accuracy of 97.7% with 0.01 FPR, 0.03 FNR, and an area under the ROC curve (AUC) score of 0.99. The results show that our proposed model successfully classifies breast tumors while overcoming previous research limitations. Finally, we summarize the paper with the future trends and challenges of the classification and segmentation in breast cancer detection.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference53 articles.

1. A novel approach for breast cancer detection using data mining techniques;Chaurasia;Int. J. Innov. Res. Comput. Commun. Eng.,2017

2. Machine Learning Classification Techniques for Breast Cancer Diagnosis

3. A comparative study on segmentation and classification in breast mri imaging;Yurttakal;Instute Integr. Omics Appl. Biotechnol.,2018

4. Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review

5. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3