A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases

Author:

Kababulut Fevzi Yasin1ORCID,Gürkan Kuntalp Damla1,Düzyel Okan2ORCID,Özcan Nermin3,Kuntalp Mehmet1ORCID

Affiliation:

1. Department of Electrical Electronic Engineering, Dokuz Eylül University, Izmir 35390, Turkey

2. Department of Electrical Electronic Engineering, Izmir Institute of Technology, Izmir 35433, Turkey

3. Department of Biomedical Engineering, Iskenderun Technical University, Iskenderun 31200, Turkey

Abstract

The aim of this study is to propose a new feature selection method based on the class-based contribution of Shapley values. For this purpose, a clinical decision support system was developed to assist doctors in their diagnosis of lung diseases from lung sounds. The developed systems, which are based on the Decision Tree Algorithm (DTA), create a classification for five different cases: healthy and disease (URTI, COPD, Pneumonia, and Bronchiolitis) states. The most important reason for using a Decision Tree Classifier instead of other high-performance classifiers such as CNN and RNN is that the class contributions of Shapley values can be seen with this classifier. The systems developed consist of either a single DTA classifier or five parallel DTA classifiers each of which is optimized to make a binary classification such as healthy vs. others, COPD vs. Others, etc. Feature sets based on Power Spectral Density (PSD), Mel Frequency Cepstral Coefficients (MFCC), and statistical characteristics extracted from lung sound recordings were used in these classifications. The results indicate that employing features selected based on the class-based contribution of Shapley values, along with utilizing an ensemble (parallel) system, leads to improved classification performance compared to performances using either raw features alone or traditional use of Shapley values.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3